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Abstract

To carry out data analysis, it is necessary to implement a model that guides the process
in an orderly and sequential manner, with the aim of maintaining control over software
development and its documentation. One of the most widely used tools in the field of
data analysis is the Cross-Industry Standard Process for Data Mining (CRISP-DM), which
serves as a reference framework for data mining, allowing the identification of patterns
and, based on them, supporting informed decision-making. Another tool used for pattern
identification and the study of relationships within systems is network analysis (NA), which
makes it possible to explore how different components are interconnected. The integration
of these tools can be justified and developed under the principles of Situational Method
Engineering (SME), which allows for the adaptation and customization of existing methods
according to the specific needs of a problem or context. Through SME, it is possible to
determine which components of CRISP-DM need to be adjusted to efficiently incorporate
NA, ensuring that this integration aligns with the project’s objectives in a structured and
effective manner. The proposed methodological process was applied in a real working
group, which allowed its functionality to be validated, each phase to be documented, and
concrete outputs to be generated, demonstrating its usefulness for the development of
analytical projects.

Keywords: CRISP-DM; network analysis; process modeling; data science methodology;
situational method engineering; educational data mining; structured data analysis;
integrated framework

1. Introduction
The Cross-Industry Standard Process for Data Mining (CRISP-DM) model is a proven

and widely adopted framework that guides data analysts through the various phases of
the data mining process, from understanding the problem to implementing solutions [1]. It
has become one of the most widely used methodologies in data mining, surpassing other
approaches such as SEMMA [2].

Recent studies have confirmed its utility in different domains, such as predicting
student retention in higher education [3] and anticipating dropout risks using data from
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virtual learning platforms [4]. These applications demonstrate the enduring relevance of
CRISP-DM, while also highlighting its limitations, particularly its sequential nature, which
constrains its ability to analyze more complex relational structures.

Network analysis, on the other hand, is a multidisciplinary technique that originates at
the intersection of sociology and mathematics. It focuses on exploring and studying the re-
lationships between entities within interconnected systems and has been applied in diverse
areas such as communication, knowledge transfer, economic flows, and organizational
processes [5,6].

More recent research has expanded these perspectives, applying network analysis
to capture structural and dynamic patterns in complex systems. For example, Parad-
owski et al. [7] used dynamic social network analysis to examine interaction patterns in
second-language learning, while Saqr et al. [8] introduced Transition Network Analysis
(TNA), a novel approach for modeling relational and temporal processes in learning and
organizational contexts. These advances emphasize the capacity of network analysis to
complement traditional data mining frameworks by incorporating both structural and
dynamic perspectives.

From this perspective, it is common to find cases where methodological processes are
integrated or adapted to meet specific needs, such as the identification of patterns in com-
plex data. This approach relates to Situational Method Engineering (SME), a concept from
software engineering which, according to Henderson-Sellers et al. [9], involves adapting
existing methods to fit the particular conditions of each context. This process encompasses
the design, construction, and customization of methods, techniques, and tools.

In this context, this article presents a methodological proposal that combines the
CRISP-DM model with network analysis techniques, guided by SME. The integration
articulates the sequential structure of CRISP-DM with the relational approach of network
analysis through the stages defined by SME.

2. Theoretical Background
2.1. CRISP-DM

As previously mentioned, the Cross-Industry Standard Process for Data Mining
(CRISP-DM) is a guide for data analysis and data mining. It consists of six phases, each of
which helps the analyst maintain a structured approach to the analysis by outlining the
actions required to complete each phase. This model can be treated as an iterative process,
but it also allows flexibility to return to any previous phase if corrections or adjustments
are needed. According to IBM [1], the six phases are listed in Table 1.

In Figure 1, the process presented by IBM can be observed; in it, each of the six phases
of CRISP-DM can be followed.

The use of CRISP-DM in the field of data science has developed a trend toward its
implementation, which, according to a search on the IEEE Xplore website, resulted in only
251 articles using the CRISP-DM methodology between 2003 and 2024 as shown in Figure 2.
As of the date of this analysis, these are the identified results IEEE Xplore [10].

Similarly, an additional search was conducted in Scopus, a widely used database for
consulting research material. It yielded more results, with 1119 documents related to the
CRISP-DM model found as of the date of this analysis [11]. It is worth noting that the same
trend observed in IEEE Xplore is also present here, clearly indicating that the use of this
tool is consistent. As shown in Figure 3, this aligns with the trend of using this model for
data science, allowing it to be adapted with other techniques to improve its application.
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Table 1. Phases and descriptions of the CRISP-DM model [1].

Phase Description

Business Understanding
Involves understanding the problem or business to be solved, as well
as identifying the project’s requirements, assumptions, constraints,
and benefits.

Data Understanding Relevant data is collected and explored to become familiar with its con-
tent, quality, and structure.

Data Preparation Necessary activities are carried out to prepare the data for modeling,
which may include cleaning, transformation, and selection of data.

Modeling In this stage, appropriate modeling techniques are selected and applied
to the prepared data, adjusting parameters as needed.

Model Evaluation The created model is evaluated to ensure it meets the business objectives,
and results are reviewed to determine if adjustments are needed.

Model Deployment The model is implemented in a real environment, using the acquired
knowledge to make decisions or take concrete actions.

Figure 1. CRISP-DM process diagram [1].

In this context, the implementation of CRISP-DM has been consolidated as a valuable
tool for the development of multiple data science projects in different areas of knowledge.
One example is the work of Flores-Villamil et al. [12], who implemented it to identify
the safety and health risks faced by schools and their populations due to their proximity
to hazardous elements, whether natural or infrastructural. The study was conducted
with data from Mexico and focused on geospatial analysis and unsupervised machine
learning techniques, specifically the K-Modes clustering algorithm, to identify and classify
hazardous elements near schools.
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Figure 2. IEEE Xplore results [10].

Figure 3. SCOPUS results [11].

Another study is that of Dursun and Sabyrzhan [13], who used CRISP-DM in the
development of smart buildings in universities, aiming to optimize the use of resources
such as heating and lighting in classrooms and laboratories. Their approach integrated
autonomous control systems capable of significantly reducing energy consumption and
operational costs. The study showed that the quality of the data used directly influenced the
results of the machine learning model, and that the patterns identified through CRISP-DM
facilitated more efficient planning. However, the level of savings varied depending on
external conditions and the occupancy of each space.

Similarly, Torres et al. [14] worked on the efficient management of inventories in small-
and medium-sized enterprises (SMEs) in the retail sector, a key aspect that influences
their operation, costs, and competitiveness. They applied the CRISP-DM model in the
development of a demand forecasting model based on historical sales records. The process
included preprocessing tasks, cross-validation, and the evaluation of various machine
learning algorithms, including Random Forest, LSTM (Long Short-Term Memory), XGBoost
(Extreme Gradient Boosting), and Decision Tree, using metrics such as MAE (Mean Absolute
Error), MSE (Mean Squared Error), and R² (Coefficient of Determination). They concluded
that the implementation of CRISP-DM allowed for structuring the workflow, facilitating
pattern identification, and improving inventory management accuracy.
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For their part, Gill et al. [15] used the model to integrate ontology design with expert
knowledge and data mining in the development of a model applied to the corrective
maintenance of Cyber–Physical Systems (CPSs). Through this approach, they created a
specific ontology that facilitates anomaly detection through a temporal automaton. They
used ontological design patterns, such as UML State Machine and ISO 17359 standard,
which allowed them to expand the structure of the ontology and improve its application in
digital services focused on maintenance management.

In the work of Vásquez et al. [16], CRISP-DM was applied to predict technical support
demand in a banking company, based on a dataset generated between 2020 and 2023.
During the process, temporal patterns were identified, records were cleaned, and several
algorithms were trained, with Random Forest standing out for its accuracy. The model
allowed for anticipating demand and allocating resources more efficiently, with potential
applications in sectors such as finance, advertising, and healthcare.

Finally, in the work of Acuña-Cid et al. [17], the CRISP-DM methodology was im-
plemented to develop a predictive analysis of hypertension risk in Mexican adults using
nutritional and caloric indicators. The process included the collection, cleaning, and se-
lection of variables related to macronutrient intake, which allowed for the structuring
of a quality dataset. Various machine learning models were evaluated, with Random
Forest standing out for its accuracy and XGBoost for its efficiency with large data volumes,
while Naive Bayes showed the lowest performance. The SMOTE (Synthetic Minority
Over-sampling Technique) method was also applied to address class imbalance, which
improved the model’s results, and the importance of proteins, carbohydrates, and lipids in
risk prediction was highlighted, especially in young adults, providing a useful basis for
future public health interventions.

Despite its widespread adoption, Saltz et al. [18] point out that CRISP-DM presents
several limitations that may affect its implementation in modern data science environments.
One of its main weaknesses is its rigid and sequential approach, which can lead to slow
and non-adaptive processes if rapid iterations are not incorporated. Another critical aspect
is the lack of integration with modern technologies, such as cloud architectures and version
control tools, which reduces its efficiency in current analytical scenarios. The absence
of clear communication strategies with stakeholders is also identified, which can lead to
a disconnect between technical teams and decision-makers. Furthermore, CRISP-DM is
not a project management framework, which limits its application in multidisciplinary
teams without a complementary methodology to facilitate work coordination. Therefore, it
becomes necessary to modify or integrate the model with tools that address its limitations
and adapt it to current contexts.

2.2. Network Analysis

To conceptualize the term “network analysis”, we can refer to Quiroz Zamora and
Arias Novelo [19], who state that it is a branch of discrete mathematics that allows for the
identification and analysis of relationships and interactions with different types of nodes.
These nodes can represent any element that forms part of the network, such as people,
groups, and devices, or when viewed from a health perspective, symptoms, age, weight,
and height; the important thing is that they have something in common in order to be
considered a network. Two isolated nodes cannot be considered a network.

Once the general logic of network analysis is understood, it is possible to identify
its main components. These include not only structural elements such as nodes, links,
directionality, and network structures [19] but also more specific aspects that enrich the
analysis, such as the weighting of links [20] and the attributes associated with nodes [21]
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and with links [22]. The definitions and functions of each of these elements are presented
in Table 2.

Table 2. Elements and descriptions of a network.

Element Description

Nodes These are individual points within the network that represent the elements
that comprise it [19].

Links Represent the connections between nodes within the network [19].

Network Structures Refers to the set of nodes and links and the way they are organized within
the network [19].

Directionality Some network links have a direction, which indicates the flow of elements;
it also shows where elements originate and where they go [19].

Weighting Refers to the value assigned to each link, indicating the intensity, frequency,
or strength of the relationship between nodes [20].

Nodes with Attributes
These are nodes that contain additional information, such as category,
age, or role, allowing for a more detailed analysis of their function in the
network [21].

Links with Attributes
These are relationships between nodes that include specific characteristics,
such as type of connection, context, or duration, enriching the analysis of
interactions [22].

Sub-networks These are groups of interconnected nodes within a larger network that
share particular characteristics or relationships [19].

Understanding the elements of network analysis is key to comprehending how differ-
ent components within a system are related, as this technique allows for the representation
of complex phenomena and has been adapted in various processes to facilitate their analysis.
Similar to CRISP-DM, a search was conducted on the IEEE Xplore website to identify how
many projects have used network analysis as a foundation, and this topic showed a signifi-
cantly higher presence, with approximately 1684 results between 2020 and 2025 alone [23].
Although this technique is widely used in different fields, only the IEEE database was used
due to its specialized focus on engineering, data science, and artificial intelligence.

To identify the thematic areas in which network analysis is applied, clustering was
performed with Python (version 3.11.1) using the keywords from the articles. This technique
allowed for grouping the most relevant topics into five clusters, defined using the elbow
method, which consists of plotting the Within-Cluster Sum of Squares (WCSS) against
the number of clusters and selecting the point where the decrease in WCSS becomes less
pronounced, forming the so-called “elbow curve” [24]. In practical terms, this allowed for
segmenting the keyword space into five groups with similar characteristics.

From the previous process, some results emerged with relevant particularities. One
of them is the appearance of similar keywords in different clusters, which is related to the
interdisciplinary nature of terms such as machine learning, social network analysis, and
sentiment analysis, as they are used across various research areas. For this reason, it is
common for the same term to appear in more than one group, without this representing
an error in the clustering as shown in Figure 4, which displays the distribution of articles
by cluster.

This grouping was generated using TF-IDF (Term Frequency-Inverse Document Fre-
quency) vectorization, a technique commonly used in information retrieval and text min-
ing to evaluate the importance of a word within a document in relation to a broader
collection [25]. Although TF-IDF allows for grouping similar terms, it does not prevent
certain keywords, due to their general relevance, from appearing in multiple documents
or clusters.
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Figure 4. Distribution of articles by keyword cluster [23].

Based on this clustering, five clusters were identified that reflect specific thematic areas.
Cluster 0 encompassed general topics such as machine learning and social network analysis;
Cluster 1 specialized in community detection and complex networks; Cluster 2 focused on
practical applications such as sentiment analysis and text mining; Cluster 3 concentrated
on natural language processing (NLP) and textual analysis; and Cluster 4 centered on big
data and data processing. These results highlight the diversity and interdisciplinary focus
of network analysis, which ranges from theoretical studies (Clusters 1 and 3) to practical
applications (Clusters 2 and 4). Figure 5 shows the three most frequent keywords in
each group.

Figure 5. Most frequent keywords per cluster.
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Identifying the thematic areas in which network analysis has been applied provides a
general overview of its main uses and approaches. This thematic classification facilitates the
organization of available knowledge and serves as a basis for locating representative works,
allowing for a deeper understanding of its concrete applications and the methodologies
used in different contexts.

One of the articles found on the IEEE Xplore platform is the work by Kamalzadeh and
Haghighat [26], who used network analysis to identify influential users within the hashtag
network of the Zar Makaron brand. Through metrics such as centrality and PageRank, they
were able to detect key nodes (hubs) that facilitated the dissemination of information and
optimized digital marketing strategies. The results matched the users previously identified
by the company and showed how the online activity of these profiles aligned with real-
world events, reinforcing the usefulness of network analysis as a tool for decision-making
and behavior prediction in digital environments.

Another relevant study is that of Jiang et al. [27], who applied network analysis to
examine the structure of financial agglomeration in the Beijing–Tianjin–Hebei region. Using
centrality metrics, they identified Beijing and Tianjin as the main influential nodes, as well
as subgroups of interconnected cities within the network. The model used considered the
spatial connections between cities as points and lines, allowing for a graphical representa-
tion of financial relationships. The authors concluded that strengthening these connections
and promoting collaborative development are key to reducing regional imbalances.

In the study by Qian and Li [28] titled “Research Status and Trends of Panoramic Video
in Education: Based on Social Network Analysis and Co-word Analysis Method”, network
analysis and co-word analysis were applied to explore trends in the use of panoramic video
in the educational field. Through keyword social maps, they identified core concepts such
as virtual reality and 360-degree video, as well as their thematic connections. Centrality
analysis allowed for the prediction of future research trends, such as the development of
educational applications based on virtual reality, the optimization of learner experience, and
the study of immersion and presence in learning environments. Advances in technologies
related to panoramic video are also anticipated, reinforcing the usefulness of network
analysis for understanding current and emerging approaches in the educational field.

Finally, an example of the implementation of network analysis can be found in the
study by Medina Nogueira et al. [29], where a procedure is proposed in the university con-
text for auditing knowledge management. This methodology is organized into three phases,
each composed of specific stages that guide the process from domain delimitation to the
quantitative analysis of the network. Table 3 summarizes this procedure, highlighting the
key actions to structure, represent, and analyze the interactions among the involved actors.

Table 3. Procedure for network analysis in knowledge management auditing.

Phase Stage Description

Analysis Preparation Knowledge Domain Delimitation The area, process, or unit where the analysis will be applied is defined.

Interview Design The data to be collected is established: functions, tasks, relationships,
and communication channels of the actors.

Procedure Design Tools, steps, and resources required to carry out the analysis are planned.

Actor Identification Initial Identification Key actors are identified through interviews and documents.

Network Growth The network is expanded through references provided by identified
actors, until saturation is reached.

Social Network Analysis Structural Analysis The adjacency matrix is built according to the intensity of relationships,
and the sociogram is generated.

Quantitative Analysis Metrics such as degree centrality, betweenness, and closeness are inter-
preted, along with the identification of clusters and key nodes.
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Despite the growing application of network analysis in various fields, there is still a
lack of standardization in methodological processes, which can limit its effective implemen-
tation. This is mentioned in the work of Valente et al. [30], where they emphasize that the ab-
sence of a clear methodological framework can make it difficult for studies to be replicated
with the same results and for their findings to be compared across different investigations.

Similarly, Jerneck and Olsson [31] point out that in the field of innovation and futures
studies, which focus on anticipating and analyzing possible scenarios to support decision-
making, many studies recognize the value of network analysis but use it metaphorically,
without taking advantage of the methodological possibilities that this technique offers.

On the other hand, Valente et al. [30] point out that in the context of implementing
initiatives such as public policies, social programs, community strategies, or actions aimed
at improving public health, a limited understanding of network structures can represent
a significant barrier to their success. Network analysis provides valuable tools for under-
standing, monitoring, and influencing their development, especially when such actions
need to be adapted to different environments.

To overcome these limitations, it is essential to have a methodological process that
guides the application of network analysis in a structured and coherent way. Although
there are various proposals, many of them are designed for very specific contexts, which
makes it difficult to adopt them in other scenarios. Therefore, it is important to move
toward a more general methodology that can be adapted to different settings, types of data,
and analytical objectives, allowing for a broader and more consistent implementation of
network analysis.

2.3. Situational Method Engineering

Situational Method Engineering (SME) is a discipline focused on the construction
and adaptation of specific methods for particular projects, taking into account the unique
characteristics of each situation. Its main objective is to provide a flexible approach that
allows for the selection, adaptation, and assembly of methodological components to create
customized solutions that fit the specific needs of a given project or context [32].

According to Harmsen [33], SME seeks to achieve controlled flexibility by building
methods that fully consider the applicable circumstances of a given situation, referred to as
situational methods. This approach enables organizations to develop methods that closely
align with their specific needs and contexts, rather than adopting generic approaches that
may not be suitable for all situations.

In practice, SME involves the identification and selection of fragments from existing
methods, their adaptation to the specific characteristics of the project, and their integration
into a cohesive and effective method. This approach has proven to be especially useful in
the development of information systems and software engineering, where conditions and
requirements can vary significantly between projects [33–35]. In this sense, and recalling
that SME is based on a structured approach to building situational methods, it is possible
to identify a series of common stages in its application as shown in Table 4.

Based on these stages, various studies have applied SME in different contexts to
design methodologies tailored to specific situations. These documented experiences ad-
dress challenges such as the integration of existing models, the adaptation of processes
to particular environments, and the generation of flexible and reusable methodological
solutions. Although the reported benefits are broad, such as customization and modularity,
recurring challenges are also noted, including the technical complexity of implementation
and limited empirical validation in certain cases.



Mach. Learn. Knowl. Extr. 2025, 7, 101 10 of 38

Table 4. Stages of Situational Method Engineering (SME).

SME Stage Description

Context Analysis
The specific characteristics of the environment or project in which the method will be
applied are identified. This includes the type of problem to solve, objectives, constraints,
available resources, and organizational context [32,33].

Selection of Method Com-
ponents

Libraries of existing method fragments or components are consulted. These fragments may
include activities, models, techniques, or guidelines that match the requirements identified
in the previous stage [34,35].

Component Adaptation The selected components are adjusted to better suit the project’s conditions. This stage may
involve modifying their sequence, structure, terminology, or level of detail [33,36].

Method Assembly
The adapted components are integrated to form a cohesive method. This method must
be consistent, complete, and applicable to the specific situation, ensuring continuity and
coherence between components [35,37].

Method Evaluation The assembled method is applied and its results evaluated in a real context. Based on this
feedback, components are adjusted or improvements documented for future use [9,32].

Table 5 presents a comparative summary of recent studies that have used SME,
highlighting the purpose of its application, the integrated methods or models, and the
methodological products generated, as well as the advantages and limitations identified in
each proposal.

Table 5. Comparative summary of studies using Situational Method Engineering (SME).

Article Purpose of SME Use Integrated Methods
or Models

Methodological
Product Advantages Limitations

Enhancing the OPEN
Process Framework
with
Service-Oriented
Method
Fragments [35]

Customization of
SOSD processes
through reusable
method fragments

OPEN Process
Framework with
service-oriented
SDMs

Set of reusable
method fragments
incorporated
into OPF

Enhances process
customization for
SOSD, supports
reuse, and aligns
with a recognized
standard

Limited empirical
validation, focused
on a specific
domain (SOSD)

A Framework for
Quantifiable Process
Improvement
through Method
Fragments in
Situational Method
Engineering [38]

Improve processes
through quantifiable
method fragments,
optimized by
network diagrams
and linear
programming

SME, BPM, CPM, LP

Framework with
RFDs and ARFDs,
plus a process
scheme (PS) for
quantifiable
improvement

Visualization,
evaluation, and prior
optimization of
processes, integration
of metrics

High technical
complexity, requires
knowledge in LP and
process theory

An aspect-oriented
methodology for
e-readiness
assessment [39]

Design a customized
assessment
methodology
according to each
organization’s
specific requirements

SME, e-readiness
assessment models

E-readiness
assessment model
adaptable to
organizational
aspects

Allows reuse of
existing components
and model
adaptation to specific
contexts

No empirical
validation or
implementation
results reported

Computational
Thinking Work
System Method: A
problem-solving
method for small
and medium
enterprises [40]

Design a method to
help SMEs structure
and solve problems
using computational
thinking

Computational
Thinking (CT),
Work System
Method (WSM)

Methodological
artifact composed of
six activities
structured in a
manual

Facilitates problem
self-exploration and
improves operational
efficiency in SMEs

Requires additional
confirmatory
validation; focused
on a specific sector

Data-Driven Agile
Requirements
Elicitation through
the Lenses of
Situational Method
Engineering [41]

Design an adaptable
method for
requirements
elicitation from
digital sources,
complementing
traditional agile
approaches

SME, DDRE,
Agile RE

Modular process
composed of
intentions, strategies,
and method chunks
adapted to specific
contexts

Enables the
construction of
data-driven
elicitation methods
tailored to the
situation, combining
heterogeneous
sources with
contextual criteria

Lacks full empirical
evaluation; requires
technical expertise
for modeling and
applying the
approach
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Table 5. Cont.

Article Purpose of SME Use Integrated Methods
or Models

Methodological
Product Advantages Limitations

Software Process
Improvement by
Managing Situational
Method Engineering
Knowledge [42]

Evaluate and
improve existing
SME methods
through knowledge
management criteria
and knowledge flows

SME, KM, CMMI

Evaluation
framework and
improvement model
based on KM applied
to 8 methods and
4 case studies

Enhances SME
methods’ capacity to
capture, reuse, and
share critical
knowledge,
alignment with
continuous
improvement
practices

Requires high
implementation
effort; validated
in limited
contexts (Iranian
companies only)

A method for digital
business ecosystem
design: situational
method engineering
in an action research
project [32]

Develop a modular
and adaptable
methodology to
design DBEs from a
holistic perspective
based on empirical
requirements

SME, DBE, Map
Approach

Method composed of
11 modular design
maps for building
adaptive DBEs

Flexible,
goal-oriented
module, adaptable to
dynamic scenarios,
tested in a real
context (Digital
Vaccine)

Complexity in
implementation,
requires technical
knowledge in
Map-based and
SME design

Scrum Modification
for Small-scale Web
Application [43]

Adapt Scrum to
small-scale contexts
using SME and
Essence, creating a
simplified version
suited for small
teams

SME, Scrum, Essence

MiniScrum, a
reduced method with
new activities and
essential products for
limited environments

Facilitates agile
development with
less documentation
load and roles
tailored to
single-person or
small projects

Requires experience
in contextualization
with Essence; limited
generalization
beyond small projects

When analyzing the information presented in Table 5, it becomes evident that the
application of SME has been primarily oriented toward the construction of methodolo-
gies adapted to specific contexts, such as service-oriented software development, process
improvement, digital readiness assessment, or knowledge management. Some studies,
such as that of Fahmideh et al. [35], stand out for focusing on the creation of reusable
fragments within existing frameworks, while others, like that of Franch et al. [35], explore
requirements elicitation from digital data in agile environments. As for the methodological
products, these range from flexible models based on maps, as in the case of Tsai et al. [32],
to simplified methods such as MiniScrum, tailored to small teams or individual projects.

While most studies acknowledge advantages such as customization, reusability, and
flexibility, they also report recurring limitations related to technical complexity, lack of
empirical validation, or restricted applicability to certain domains. This review shows that
SME not only allows for the adaptation of existing methodologies but also supports the
integration of complementary approaches that address different phases of analysis. This
is particularly useful in scenarios where there is a need to articulate structured models
like CRISP-DM with relational techniques such as network analysis, combining the logical
sequence of the former with the exploratory and visual capabilities of the latter.

3. Methodology
One of the main challenges of this work was to integrate two approaches with different

structures. On the one hand, CRISP-DM provides a sequential logic that guides data
analysis in an orderly manner. On the other hand, network analysis focuses on relationships
between entities, using metrics and graphical representations to identify structural patterns.
Both models pursue complementary objectives, but there is no standard methodology that
directly articulates their components.

To address this limitation, Situational Method Engineering, already described in
Section 2.3, was adopted as the guiding framework. SME offers a systematic way to
build methods tailored to specific contexts, which in this case enabled the incorporation of
network analysis activities such as adjacency matrices, node and edge attributes, centrality
metrics, and sociograms into the CRISP-DM workflow. The integration is organized into
five stages: context analysis, component selection, adaptation, assembly, and evaluation.
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Each stage generates concrete activities and outputs that document the method and support
its later review, while Figure 6 synthesizes the framework and provides a visual overview
of the process.

Figure 6. Methodological diagram for the integration of CRISP-DM and network analysis
through SME.

As a complement to the methodological diagram, Table 6 presents the activities de-
signed for each stage of the process along with the defined outputs, offering a detailed
view of the methodological structure.

Table 6. Activities and outputs for the integration of CRISP-DM and network analysis through SME.

SME Phase Integration of the Models
(CRISP-DM and Network Analysis) Generated Outputs Methodological Purpose of

the Phase

Context Analysis

Analyze the compatibility between
the CRISP-DM model and network
analysis to determine their
complementarity.

Context analysis and justification
for the integration.

Justify the feasibility of the
methodological integration.

Selection of Methodological
Components

Identify key activities from network
analysis (such as the construction of
adjacency matrices and the use of
centrality metrics) that can be
incorporated into specific CRISP-DM
phases, especially data preparation
and modeling.

Mapping table between
CRISP-DM phases and network
activities.

Determine which specific
components will be useful.

Component Adaptation

Adjust the selected network analysis
activities to the CRISP-DM workflow,
defining integration criteria based on
the type of data, nodes, and
links involved.

Task adaptation scheme and
adjustment criteria.

Ensure that network analysis
tasks structurally fit.

Method Assembly

Integrate the adapted activities into
the overall CRISP-DM sequence,
maintaining its structural logic and
ensuring a smooth transition
between phases.

Methodological flow diagram and
narrative synthesis of the
proposal.

Consolidate a coherent and
applicable sequence.

Method Evaluation

Establish criteria to review the
internal consistency of the method
and define guidelines for its future
evaluation in real-world contexts.

Methodological reflection and
future evaluation proposal.

Validate the design and prepare it
for real-world use.

The application of the method considers certain conditions, such as having data
that represent relationships in a structured way and possessing knowledge in both data
mining and network analysis, as these elements enable the proper implementation of the
methodological proposal and the effective use of its components.

4. Results
The results presented below correspond to the methodological integration process

developed through the five stages defined by Situational Method Engineering. Each phase
leads to a specific output that forms part of the proposed design.
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The results correspond to the methodological integration developed through SME.
Each subsection describes the outputs of one stage, including methodological sheets,
diagrams, and tables. Together, these results document the construction of CRISP-NET.

4.1. Context Analysis

In this phase, the methodological characteristics of the CRISP-DM model and network
analysis were reviewed in order to identify their compatibility. For this task, management
artifacts such as a comparative table and a list of criteria were used to analyze their structure,
objectives, and data types. The analysis was conducted by the methodological designer and
resulted in a compatibility matrix that served as input to justify the possibility of integration
under a situational logic. Table 7 shows the methodological design sheet for the first phase.

Table 7. Methodological design sheet, context analysis.

Phase: Context Analysis

Purpose:
To identify whether it is possible to integrate the CRISP-DM model with network
analysis from a methodological perspective, considering their structure, workflow
logic, and data types.

Actors Involved: Method designer.

Management Artifacts: Document review, comparative table between models, and a list of criteria to assess
their compatibility.

Analytical Artifacts: Convergence and divergence matrix built from the above criteria and interpretative
notes on points of connection.

Generated Output: Narrative document justifying the methodological integration, used as the foundation
for the following phases of the process.

With the aim of explaining in a structured manner how the context analysis phase was
carried out, the process represented in Figure 7 was designed. This diagram summarizes
the activities performed and the logical order in which they were developed, allowing the
progression from the document review to the methodological justification to be visualized.

Figure 7. Process diagram for the context analysis phase.

The first activity consisted of collecting technical sources from both approaches in
order to establish a contextual foundation that would allow for an understanding of their
principles, scope, and possibilities for integration.

Based on this foundation, a comparative table was developed with the key elements
of both models, which made it possible to identify similarities and differences regarding
their structure, objectives, and types of data used. In the third stage, and based on this
result, six comparison criteria were defined: purpose, structure, type of data, questions
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that can be addressed, level of formalization, and generated outputs. These aspects were
selected to identify relevant similarities and differences between the two models. This way
of adapting the methodology is based on the work of Guba and Lincoln [44], who argue
that methodological decisions should respond to the context and purpose of the analysis.

Based on the defined criteria, a compatibility matrix was built to analyze the relation-
ship between CRISP-DM and network analysis. This tool not only describes characteristics
but also assesses the degree of possible integration between both models. For this purpose,
a classification was used based on the categories “compatible”, “complementary”, and
“complementary with adjustments”, taking as a reference the logical framework analysis
approach proposed by Comisión Económica para América Latina y el Caribe (CEPAL) [45].
The matrix helped identify points of convergence and areas requiring adaptation, which
was useful to support the design of the integrated method.

Table 8 shows that CRISP-DM structures the workflow for data analysis, while net-
work analysis expands interpretive possibilities by incorporating relationships between
elements. Their integration does not rely on structural similarity but on the articulation
of their components at key points of the process. In this sense, working with different
types of data is not a limitation but an opportunity to design transformations that enable
complementarity between sequential analysis and relational perspectives.

Table 8. Compatibility matrix between CRISP-DM and network analysis.

Criterion CRISP-DM Network Analysis Compatibility
Assessment Observation

Purpose

Guide data analysis and
mining projects through a

structured sequence
of phases.

Analyze relationships
between entities (nodes) to

identify structures,
influences, or behaviors
within complex systems.

Compatible

Both models pursue
different analytical goals
but can be applied within

the same project.

Structure

Composed of six
sequential phases:

business understanding,
data understanding, data

preparation, modeling,
evaluation, and

deployment. Can
be iterative.

Based on nodes, links, and
network metrics such as
centrality, density, and
modularity; allows for

directed and
weighted structures.

Complementary
with adjustments

The sequential structure of
CRISP-DM can be

complemented by the
relational logic of network

analysis if a connection
stage is defined.

Type of Data

Structured data from
organized records such as
databases, spreadsheets,

or time series.

Relational data describing
interactions between

nodes: people, institutions,
symptoms, etc.

Compatible

CRISP-DM uses tabular
data, and network

analysis uses relational
data; they can be
integrated with a
conversion phase.

Questions Addressed

What patterns exist in the
data? What models are

most suitable for
predicting or

classifying behaviors?

What connections exist
between elements? Which

nodes are the most
influential or central?

How are
relationships organized?

Complementary

The questions each model
addresses are different but

mutually enriching in a
combined analysis.

Generated Outputs

Predictive models,
evaluation reports,

recommendations for
solution implementation,
visualizations of results.

Graphs, sociograms,
centrality metrics,

relationship clusters,
structural visualizations.

Complementary

Both models generate
different but useful
outputs for different

stages of analysis.

The matrix shows that CRISP-DM and network analysis can be integrated in a com-
plementary way within the same methodological process, as both contribute elements
that reinforce each other. While CRISP-DM structures the workflow for data analysis,
the network approach expands interpretive possibilities by incorporating relationships
between elements.

This integration does not rely on structural similarities but rather on the possibility of
articulating their components at key moments in the process. For example, the preparation,
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modeling, and evaluation phases of CRISP-DM can be enriched with techniques specific to
network analysis, such as graph construction or the use of centrality metrics.

Working with different types of data does not represent a limitation but an opportunity
to design transformations that facilitate their integration. Likewise, the questions each
model helps address are enhanced when internal patterns are combined with relational
structures. This complementarity is also reflected in the outputs generated, which can be
part of a single analysis aimed at supporting decision-making.

4.2. Selection of Methodological Components

After defining the models to be integrated, their key elements were reviewed in order
to identify network analysis activities that could be functionally related to the phases of
the CRISP-DM model. This stage did not involve modifying components or validating
their compatibility, but rather recognizing methodological points of connection that could
serve as a basis for a preliminary linkage. The result was a correspondence table that
organized these relationships according to their analytical usefulness. The corresponding
methodological design sheet is presented below in Table 9.

Table 9. Methodological design sheet, selection of methodological components.

Phase: Selection of Methodological Components

Purpose:
To determine which network analysis activities can be incorporated into the CRISP-
DM model, based on their methodological usefulness and compatibility with the
process phases.

Actors Involved: Method designer and process analyst.

Management Artifacts: Structured review of CRISP-DM phases and network analysis techniques.

Analytical Artifacts: Correspondence table between CRISP-DM phases and applicable network analy-
sis tasks.

Generated Output: Technical scheme identifying key network analysis components selected for integration
into specific stages of CRISP-DM.

To carry out the selection of methodological components, the six phases of the CRISP-
DM model were reviewed along with their main tasks. Subsequently, techniques and
activities specific to network analysis that could add value in each phase were identified.
This procedure is summarized in Figure 8, which illustrates the process followed to identify
functional correspondences between both approaches.

Figure 8. Process diagram for the selection of methodological components.

This cross-review focused on identifying functional correspondences, that is, points in
the process where network analysis tasks could be incorporated without altering the logic
of the workflow established by CRISP-DM. The association between both approaches was



Mach. Learn. Knowl. Extr. 2025, 7, 101 16 of 38

made based on the methodological usefulness of the activities, considering the type of data,
analysis objectives, and the stage at which they provide relevant information.

Table 10 presents the resulting correspondence between the phases of the CRISP-DM
model and the specific network analysis activities selected for integration.

Table 10. Correspondence between CRISP-DM phases and network analysis activities.

CRISP-DM Phases Network Analysis Activities

Business Understanding: Define whether the problem involves relationships between entities (nodes and links).

Data Understanding: Explore whether the data contain relational attributes; identify nodes and possi-
ble connections.

Data Preparation: Build an adjacency matrix; define attributes of nodes and links.

Modeling: Apply centrality metrics; generate sociograms.

Model Evaluation: Interpret metrics and validate detected relational patterns.

Deployment: Use network analysis results to support decision-making or visualize
key interactions.

Table 10 not only organizes the activities of both approaches but also shows the
methodological logic that supports their integration. The correspondences highlight how
network analysis can extend CRISP-DM by incorporating a relational perspective at critical
points of the process.

For example, in the Business Understanding phase, it was considered relevant to
identify whether the phenomenon under study involves relationships between entities,
which justifies the early incorporation of the relational approach. In the Data Preparation
stage, building the adjacency matrix and defining attributes allows the transformation of
information into a structure compatible with network analysis. During the Modeling and
Evaluation phases, the use of centrality metrics and sociograms adds a structural dimension
that helps validate patterns. Finally, the integration was defined based on the criterion
of functional complementarity, ensuring that each technique was incorporated without
disrupting the logic of the base model.

4.3. Component Adaptation

Once the possible correspondences between the CRISP-DM phases and the network
analysis activities were identified, the most relevant elements for integration were selected.
This phase aimed to define which components of the network analysis approach added
methodological value in each stage of the process and under what conditions they could
be incorporated. To achieve this, factors such as the type of data required, the analytical
function of each technique, and their compatibility with the tasks of the base model were
considered. The following Table 11 presents the methodological design sheet corresponding
to this stage.

Table 11. Methodological design sheet, component adaptation.

Phase: Component Adaptation

Purpose: Technically adjust the previously identified network analysis activities to incorporate
them functionally into the phases of the CRISP-DM model.

Actors Involved: Method designer, data analyst, and network analysis specialist.

Management Artifacts: Initial correspondence table, adaptation criteria, and record of methodological decisions.

Analytical Artifacts:
Explanatory diagrams of the sequential incorporation of activities, detailed technical
notes on the definition and integration of nodes, links, attributes, and metrics in each
CRISP-DM phase.

Generated Output: Adapted integration proposal with specific network analysis components assigned to
each phase of the model.
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In this phase, the network analysis tasks that could be incorporated into the CRISP-
DM model were defined, based on the analysis previously carried out in the “Context
Analysis” and “Selection of Methodological Components” phases. As represented in
Figure 9, this process considered the methodological criteria identified in the compatibility
review between both models, as well as the functional identification of specific activities
established in the correspondence table (Table 8). The selected elements were organized
according to their usefulness by phase of the model as summarized in Table 10.

Figure 9. Process diagram for the Component Adaptation phase.

The final decision on the activities to be incorporated was made considering three cri-
teria derived from the conceptual framework of Situational Method Engineering [33,34,36]:
the type of data required by each task, the analytical function it contributes to the process,
and the output it generates in each phase of CRISP-DM. These criteria were applied in such
a way that the selected tasks were compatible with the logical sequence of CRISP-DM and
complemented its workflow, pertinent to datasets with relational attributes to allow the
definition of nodes, links, and adjacency matrices, and analytically valuable by including
metrics such as centrality, which provide a structural perspective that enriches statistical
results. Finally, feasibility was considered to ensure that the activities could be implemented
with reproducible techniques and accessible tools, thus facilitating the scalability of the
method. The result of this application is summarized in Table 12.

Table 12. Adapted network analysis tasks per CRISP-DM phase and adaptation criteria.

CRISP-DM Phase Selected Network Analysis Task Adaptation Criteria

Business Understanding Define relationships between nodes and links
Incorporated to anticipate whether the phenomenon under
study includes interconnected entities, allowing a relational
structure to be considered from the beginning.

Data Understanding Identify connections and attribute nodes
Added to explore attributes with relational potential,
facilitating the transition from tabular data to network
structures later in the process.

Data Preparation Define attributes of nodes and links
This activity prepares the data in a format compatible with
networks, converting records into relational elements that
can later be represented as graphs.

Modeling Identify key nodes and represent the network
Proposed to graphically represent detected relationships
and apply metrics such as centrality, which help identify
relevant patterns for the model.

Model Evaluation Analyze and interpret metrics to validate
relational patterns

Incorporated to verify whether the detected structures
(such as central nodes or communities) align with the
analysis objectives and provide actionable insights.
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Table 12 illustrates how the adaptation of network analysis tasks was guided by ex-
plicit methodological criteria. By linking each task to a specific CRISP-DM phase according
to its data requirements, analytical function, and expected outputs, the integration avoids
superficial overlaps and ensures that each component contributes measurable value. In
this way, each phase of CRISP-DM was enriched with network analysis tasks that add a
structural dimension to the process, facilitating the transition between data formats and
strengthening the interpretation of results. These adaptations extend the model to incorpo-
rate relational perspectives while maintaining its logical workflow, thereby reinforcing the
robustness and applicability of the proposed method.

This phase therefore transformed the initial correspondences into a technically viable
integration, providing the concrete components that would later be assembled into the final
methodological workflow.

4.4. Method Assembly

In this phase, the method assembly was carried out by operationally integrating
the previously adapted network analysis activities into the CRISP-DM model. This as-
sembly involved clearly assigning each adapted task to its corresponding phase within
the CRISP-DM process, establishing a continuous methodological flow that enables the
coherent incorporation of network analysis. The following table (Table 13) presents the
methodological design sheet that briefly describes how this phase was organized.

Table 13. Methodological design sheet, method assembly.

Phase: Method Assembly

Purpose: To operationally integrate the adapted network analysis tasks into the CRISP-DM
model workflow.

Actors Involved: Method designer, data analyst, and network analysis specialist.

Management Artifacts: Integrated diagram of the methodological flow, technical integration notes.

Analytical Artifacts: Final table and diagram of integrated and sequenced activities within CRISP-DM.

Generated Output: Integrated CRISP-DM method enriched with network analysis activities.

Once the methodological elements and their technical justification were defined in the
previous phases, the integration strategy was designed. This strategy clearly describes the
stages of the base model, detailing its original activities along with the newly integrated
network analysis activities, as well as the expected outputs for each stage. Subsequently, a
detailed integration plan was developed in the form of a table, specifying the final stages of
the integrated process, the specific activities to be carried out, and the outputs generated in
each stage. Finally, the complete integrated process was described, explicitly indicating the
objective of each phase, the roles involved, the inputs and outputs, and a final summary
table with all integrated activities and products. Figure 10 shows the execution of this
phase, organized into three main activities and their corresponding generated outputs.

Figure 10 illustrates the operational sequencing of activities, showing how coherence
across phases was considered in the assembly of the method. By explicitly linking the
integrated tasks with their expected outputs, the diagram demonstrates how the incorpora-
tion of network analysis complements CRISP-DM without altering its logical flow. This
visualization also provides evidence of the traceability of decisions since each output can
be directly associated with a specific activity, reinforcing the methodological consistency of
the proposal.



Mach. Learn. Knowl. Extr. 2025, 7, 101 19 of 38

Figure 10. Execution of the Method Assembly phase and generated outputs.

4.4.1. Integration Strategy Design

Table 14 presents the integration of the CRISP-DM model stages with network analysis
activities. The structure of the model was preserved, as its sequence is logically consistent.
Although this being a new proposal allowed for the renaming or adaptation of stages to
better fit the new activities, it was decided to keep them unchanged, as they sufficiently
met the requirements.

In the Business Understanding stage of the CRISP-DM model, the activity titled
Relationships between entities was integrated with the goal of defining from the outset
whether there are relationships between nodes and links—in other words, whether the
problem under study involves multiple variables and interconnected phenomena, which
indicates a non-linear nature. It is important to note that this stage also includes the
original activities of the model such as establishing the study objectives, understanding the
requirements and assumptions, and identifying potential risks or limitations. Similarly, this
phase aims to define the measurement criteria, meaning what is intended to be analyzed,
and based on that, generate a project plan as well as identifying potential tools or techniques
to be used in later stages.

In the Data Understanding stage, it is essential to understand and identify the con-
nections and nodes present in the information. This means analyzing the relationships
between variables and selecting those with the strongest correlations. This stage is one of
the most critical in the process, as key decisions for the subsequent analysis are made here.
For this reason, the activity of identifying relationships is carried out at the end once the
data have been obtained, their attributes and properties reviewed, potential issues detected,
and solutions proposed. All of this is supported by the use of descriptive statistics, which
serves as a foundational tool for this initial approach to analysis.

In the Data Preparation stage, once the data context has been understood, including
its source, attributes, connections, and nodes necessary for applying network analysis,
the process continues with data preparation. At this point, it is crucial to clearly define
selection and exclusion criteria, as well as the necessary actions to ensure data quality. These
actions include the detection and elimination of duplicate records, the treatment of missing
values, the correction of inconsistent codings, and the identification of potential outliers.
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Depending on the type of attribute, categorical variables may be recoded, numerical values
transformed, or imputation strategies applied when required. In addition, transformations
are applied to unify the dataset into a single functional set and prepare it for use in
the next stage. As part of the integration of network analysis, the connection matrix is
incorporated during this phase, where the nodes, links, and their attributes are explicitly
defined, allowing the data to be structured in a relational format that will serve as the
foundation for building the network in the modeling stage.

Table 14. Integration plan: CRISP-DM and network analysis activities.

CRISP-DM
Stages

CRISP-DM Model
Activities

Network Analysis
Activities

Integrated Process
Activities

Integrated
Process Stages

Integrated Process
Outputs

Problem
understanding

Business objectives
Assess the current
situation
Data mining
objectives
Project plan

Define whether the
problem involves
relationships
between entities
(nodes and links)

Business objectives
Assess the current
situation
Data mining
objectives
Relationship
between entity
Project plan

Problem
understanding

Definition of
objectives,
requirements,
criteria, project
plan, and node
relationships

Iteration

Data
understanding

Data collection
Data description
Data exploration
Data quality
management

Explore whether
the data contain
relational attributes;
identify nodes and
possible
connections

Data collection
Data description
Data exploration
Attribute
relationships
Data quality
management

Data
understanding

Data sources,
attributes,
properties, issues,
and connections
between nodes

Iteration

Data preparation

Data selection
Data cleaning
Data construction
Data integration
Data formatting

Adjacency matrix
construction;
defining node and
edge attributes

Data selection
Data cleaning
Data construction
Data integration
Define node and
edge attributes
Data formatting

Data preparation

Data selection,
quality control,
transformation,
integration, model
fitting, and
connection matrix

Iteration

Modeling

Modeling technique
selection
Strategy for model
quality verification
Model building
Model adjustment

Application of
centrality metrics;
generation of
sociograms

Modeling technique
selection
Strategy for model
quality verification
Model building
Identification of key
nodes and network
representation
Model adjustments

Modeling

Model selection and
prerequisites,
training and testing,
parameter tuning,
final evaluation,
and sociogram
analysis

Iteration

Modeling
evaluation

Modeling technique
selection
Process review
Next steps

Interpretation of
metrics and
validation of
detected relational
patterns

Modeling technique
selection
Process review
Validation of
relational patterns
Next steps

Modeling
evaluation

Results verification,
error detection,
relational
validation, and
decision evaluation

Iteration

Deployment

Production
deployment plan
Monitoring and
maintenance
Final report
Project review

Use of network
analysis results to
support
decision-making or
visualize key
interactions

Production
deployment plan
Monitoring and
maintenance
Final report
Project review

Deployment

Deployment
strategies,
monitoring, lessons
learned, and
conclusions

Iteration

In the Modeling stage, it is necessary to define which model or set of models will be
used, considering that the data were prepared in the previous phase according to their re-
quirements. Training activities include data splitting, testing, and evaluation of the selected
models, and parameters are adjusted when required since this phase is iterative and may
involve returning to earlier steps to optimize performance. As part of the network analysis,
sociograms are constructed, and metrics such as degree, centrality, and betweenness are
generated, which serve as quantitative indicators that complement the statistical models.
Degree centrality highlights nodes with the highest number of connections, betweenness
centrality identifies nodes that act as bridges between different groups of variables, and
closeness centrality points to nodes with greater global influence. Together, these measures
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provide relational insights that go beyond traditional statistical outputs and support a more
comprehensive interpretation of the analysis.

In the Model Evaluation phase, the results obtained in the previous stage are reviewed
to determine whether they meet the stated objectives. It is important to clearly document
the changes made during the process, as this ensures decision traceability and provides
alternatives for improvement in future work. With respect to network analysis, the focus is
on validating the detected structures, such as node centrality or community formation, and
verifying that they are consistent with the goals of the analysis. This final review makes it
possible to decide whether it is necessary to revisit earlier phases to correct pending issues
or whether the process is ready to move on to implementation.

In the final stage, the Deployment phase focuses on defining the strategies and actions
needed to implement the trained models, considering that adjustments or adaptations
may be required. A monitoring and maintenance plan should also be established, and
the lessons learned, insights gained, and process conclusions should be documented to
support future applications. This is the only phase in which no specific network analysis
activity is integrated since its main function is operational rather than analytical, and
therefore additional relational processing is not required. However, the outputs generated
in previous phases can be used as references for later adjustments.

Figure 11 illustrates the result of the methodological assembly.

Figure 11. Methodological assembly diagram: integration of network analysis activities into the
CRISP-DM model.

Figure 11 presents the integrated method as a unified workflow, where the sequential
logic of CRISP-DM is preserved while its analytical capacity is expanded through network
analysis. By embedding relational tasks at critical points, the integration maintains method-
ological coherence and enhances interpretation, reinforcing the applicability and soundness
of the proposal.

4.4.2. Integration Plan Development

Table 14 presents in detail the integration of the CRISP-DM model stages with network
analysis activities. Additionally, it lists the stages of the proposed process, describes the
corresponding activities in each of them, and specifies the outputs that should be generated.

Table 14 details the integration plan beyond a theoretical alignment, where specifying
concrete activities, stages, and outputs demonstrates that the integration plan is not limited
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to a theoretical alignment but specifies the concrete activities, stages, and outputs of the
combined process. By organizing the tasks of CRISP-DM and network analysis side by
side, the table ensures that each contribution is explicitly connected to a phase, which
prevents redundancy and reinforces methodological coherence. Furthermore, the inclusion
of expected outputs provides traceability and facilitates replication since it becomes clear
what products must be generated at each step. This level of detail shows that the integration
is systematic and operational rather than abstract.

4.4.3. Documentation Specification and Process Refinement

The outputs to be generated at each stage of the process were defined, and templates
were also created to facilitate their development. Table 15 presents these outputs.

Table 15. Deliverables of the integrated proposed process.

Outputs Phase

• Business and data mining objectives document
• Requirements gathering meeting minutes
• Specification of measurement criteria
• Project plan with tools and techniques
• Initial definition of nodes and links (preliminary relational structure)

Understanding the problem

• Record of data sources (databases, CSV files, surveys)
• Report on data attributes and properties
• Identification of issues and proposed solutions
• Mapping of connections between attributes and relational nodes

Data understanding

• Criteria for data selection and exclusion
• Record of actions to ensure data quality
• Log of applied transformations
• Integrated and validated dataset
• Adjustments applied according to model requirements
• Node–link connection matrix with defined attributes

Data preparation

• Document of model selection and its prerequisites
• Record of training, testing, and initial results
• Report on parameter tuning and final model execution
• Technical evaluation of the adjusted model
• Customized sociograms and report on centrality metrics

Modeling

• Report on results verification and model approval
• Record of identified errors, alternatives, and improvements
• Validation of relational structures against analysis objectives
• Evaluation report of decisions made and justification of iterations

Model evaluation

• Model deployment and implementation plan
• Monitoring and maintenance strategy
• Record of lessons learned and process experiences
• Final report with conclusions and recommendations

Deployment

Table 15 provides a structured inventory of deliverables that ensures the integrated
method can be consistently applied and evaluated. By defining concrete outputs for each
phase, the table transforms abstract activities into verifiable products, which reinforces
accountability and methodological transparency. These deliverables also function as check-
points that facilitate monitoring, comparison across applications, and potential replication
in other contexts. In this way, the table not only documents what should be produced but
also strengthens the reliability and transferability of the proposed process.

4.5. Method Evaluation

In this final phase of the process, the main objective was to validate the integrated
method in a real-world context, focusing on its practical application rather than solely
on a documentary review. The key aspect at this stage was to observe how the process
performs when used by real users, identifying its usefulness, clarity, and potential areas
for improvement. To this end, the elements described in the methodological design sheet
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for this phase were considered, guiding the organization of the evaluation activities in
Table 16.

Table 16. Methodological design sheet, method evaluation.

Phase: Method Evaluation

Purpose: To validate the integrated CRISP-DM and Network Analysis process through its practi-
cal application in a real academic context.

Actors Involved: Computer Engineering students, facilitating instructor, method designer.

Management Artifacts: Diagnostic survey, process application rubric, exit survey.

Analytical Artifacts: Comparative results between teams, perception analysis, process observations.

Generated Output: Contextual evaluation report of the method with improvement suggestions.

Figure 12 presents the overall flow of activities considered for the evaluation of the
method. The process was organized into three consecutive stages: an initial diagnosis, the
practical application of the method, and a final survey aimed at gathering perceptions and
suggestions. In each stage, specific outputs were generated, allowing for the assessment of
both the implementation and the user experience.

Figure 12. Activity flow for the method evaluation phase.

Figure 12 illustrates the organization of the evaluation process, structured to include
both a documentary review and a real-world validation. The three consecutive stages,
diagnosis, application, and perception survey, create a cycle that not only tests whether
the method can be implemented in practice but also captures the users’ experience. This
structure ensures that the evaluation addresses both technical consistency and pedagogical
impact, providing evidence of the method’s clarity, usefulness, and areas for improvement.

4.5.1. Knowledge Profile

To assess the level of familiarity with the CRISP-DM model and the general concept
of data analysis, a diagnostic survey was administered to students in fields related to
computer science. Table 17 shows the distribution of the surveyed students. The selection
was made based on the academic connections of the research team with faculty from various
institutions, which enabled access to undergraduate students in the city of Zacatecas,
Zacatecas. The evaluation was intentionally limited to this region due to accessibility and
direct collaboration.
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Table 17. Distribution of surveyed students by institution.

Institution Surveyed Students

UPIIZ–IPN (Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas) 35 (34.7%)
UAZ (Universidad Autónoma de Zacatecas) 39 (38.6%)
UTZAC (Universidad Tecnológica del Estado de Zacatecas) 13 (12.9%)
ITZ (Instituto Tecnológico de Zacatecas) 14 (13.9%)

Students from the sixth semester onward were selected as long as they had already
completed at least one course related to data analysis, artificial intelligence, or data mining.
A total of 101 students participated, coming from four higher education institutions: UPIIZ-
IPN, UAZ, UTZAC, and ITZ.

The academic programs included were computer systems engineering, artificial intelli-
gence engineering, and mechatronics engineering from UPIIZ-IPN; computer engineering,
software engineering, industrial electronics engineering, and biomedical engineering from
UAZ; computer systems engineering and informatics engineering from ITZ; and informa-
tion and communication technologies engineering from UTZAC.

To administer the diagnostic, a structured instrument was designed consisting of
fourteen questions divided into four sections: general information, experience in data
analysis, knowledge of methodologies, and expectations and interest. The instrument was
developed using the Google Forms platform, which facilitated its implementation and
automated data collection. Its content was created based on the objectives of the diagnostic
and validated through an internal review by the research team, in order to ensure coherence
between each section and the overall goals of the evaluation. Figure 13 shows a view of the
applied instrument.

Figure 13. Diagnostic survey interface for the evaluation of the integrated CRISP-DM and network
analysis method.

The survey included closed questions with multiple-choice options and familiarity
scales, which helped gather precise information about the students’ prior training, their
experience with the CRISP-DM model, and their knowledge of network analysis concepts,
as well as their interests and possible difficulties with the use of structured methodolo-
gies. This information made it possible to identify the level of perception students had
regarding the use and understanding of the models that would later be integrated into the
proposed process.

For data processing, a descriptive quantitative analysis was conducted based on
frequencies and percentages, with the objective of identifying patterns in the levels of
knowledge, experience, and interest related to the CRISP-DM model and network analysis
among the different surveyed groups.
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The most relevant diagnostic results are presented below. In Figure 14, it can be seen
how many of the respondents have taken a course related to data analysis, showing that
81.2% of the population have done so, while 18.8% have not taken any course in this area.

Figure 14. Distribution of respondents who have taken courses related to data analysis or
artificial intelligence.

Of the total number of students who have taken or are currently taking a course related
to data analysis, only 19.5% have used the CRISP-DM model to complete a full project,
13.4% have used it partially, 24.4% have heard of it but have not applied it, and 42.7% do
not know it. This last group represents the majority, which presents an opportunity to
introduce the student population to a new practice with this model, as shown in Figure 15.

Figure 15. Self-reported familiarity with the CRISP-DM model.

In the case of network analysis, 46.3% of the population claim to know it, 23.2%
indicate they have no idea, and 30.5% say they are not sure. This outlook also represents an
opportunity to introduce the integration of this approach with the CRISP-DM model, as
shown in Figure 16.
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Figure 16. Familiarity with the concept of network analysis.

In Figure 17, the learning interests in practical data analysis activities are shown, where
most students expressed high interest in applying a structured process (74.4%), identifying
hidden or non-obvious patterns (73.2%), and understanding how different variables relate
to each other (72%). Other preferences also stand out, such as the use of tools that combine
analysis and visualization (61%) and learning new ways to present results (51.2%). These
results reflect a positive attitude toward methodologies that clearly integrate technical
analysis with the visual interpretation of data.

Figure 17. Areas of interest for learning or improvement in data analysis activities.

Based on Figure 18 about possible difficulties in performing structured data analysis
activities, it can be seen that the main obstacle identified by the respondents was not
knowing the procedure to follow well (63.4%), followed by a lack of practice or previous
experience (57.3%), and difficulty in understanding some concepts (46.3%). It is also notable
that 42.7% mentioned not knowing how to interpret the results obtained. These findings
reflect the need for clear, structured methodologies supported by tools that strengthen both
conceptual understanding and the practical application of data analysis.
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Figure 18. Perceived obstacles to performing in a structured data analysis activity.

In Figure 19, it is shown that a large percentage of the participants, 68.3 percent,
expressed being completely interested in learning a step-by-step methodology to analyze
data from preparation to result interpretation. Additionally, 23.2 percent expressed interest
although they are not familiar with this type of approach, and 8.5 percent would consider
it depending on how it is applied. These results show a high willingness among students
to incorporate structured methodologies into their analysis processes, which supports the
relevance of developing and implementing integrated methodological proposals such as
the one presented in this study.

Figure 19. Interest in learning a step-by-step data analysis methodology.

Figure 20 shows that 67.1% of respondents said they are very interested in learning
tools that allow for analyzing relationships between elements, such as networks or graphs,
while 30.5% expressed some interest. Only 2.4% of the population showed little or no
interest. These data reinforce the relevance of incorporating network analysis in educational
settings, as there is a clear willingness among students to explore this type of approach.

The diagnostic results highlight a heterogeneous knowledge profile among the stu-
dents. While most had some exposure to data analysis, familiarity with CRISP-DM and
network analysis was limited, which justifies the relevance of introducing an integrated ap-
proach. The strong interest expressed in learning structured processes, identifying hidden
patterns, and using network-based tools indicates that the method responds to a genuine
educational and practical need. At the same time, the reported difficulties, such as lack of
prior experience and uncertainty about interpreting results, underscore the importance of
providing clear guidance and examples during implementation. Together, these findings
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indicate the pertinence of the proposed methodology as both a pedagogical instrument and
a framework for applied analysis.

Figure 20. Interest in learning tools for network or graph-based analysis.

4.5.2. Method Application

The process was implemented with the Data Mining group from the Computer Sys-
tems Engineering program at UPIIZ-IPN, made up of 20 students. This same group had
worked with the CRISP-DM model in the course Statistical Tools for Data Analytics one
semester earlier, where they applied it in a project related to public health data analysis.
Thanks to that previous experience, the students were already familiar with the context
and the associated problem. In this new experience, they carried out an analysis using
information from the Encuesta Nacional de Salud y Nutrición (ENSANUT) 2021, focused
on the prediction of hypertension, using variables such as weight, height, and diagnostic
condition, among others. The group was divided into five teams of four members.

To facilitate process documentation, specific templates were designed for each phase,
which were completed by the teams based on the information generated during their
application. A digital repository was also created on the OneDrive platform using the
institutional IPN account, in order to organize and track all deliverable products. Each
uploaded file corresponds to one of the expected results in the model. Figure 21 shows an
example of the repository structured by teams and phases, where the organization of the
generated products can be seen, such as meeting minutes, project plans, attribute reports,
connection matrices, sociograms, among others.

The implementation of the method was carried out from 18 March to 23 May 2025.
However, due to non-working days in the academic calendar and regular evaluations,
students had a total of 32 effective working days to complete the process.

To ensure that each team properly followed the proposed process and submitted
the required outputs for each phase, a checklist was designed. This instrument made it
possible to systematically record whether the activities had been completed and whether
the required documents were submitted. It included an evaluation of the status of each
product (for example, completed or pending) and identified the submitted file using a
reference code. Figure 22 shows an example of this checklist, which helped track progress
and review the final compliance with the methodological process.
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Figure 21. Example of a structured repository organized by team and phase for storing process
documentation and analytical outputs.

Case Study with ENSANUT 2021

For the case study, the analysis was conducted with the ENSANUT 2021, focusing on
hypertension prediction in the adult Mexican population; after the data preparation phase,
the variables finally selected for modeling were age, sex, weight, height, average systolic
pressure, average diastolic pressure, diabetes diagnosis, high cholesterol diagnosis, high
triglycerides diagnosis, smoking status, blood glucose, HDL cholesterol, LDL cholesterol,
and triglycerides.

The process followed all phases of CRISP-DM, complemented with network analysis.
In the preparation stage, nodes and links were defined and organized into a connection
matrix, while in the modeling stage logistic regression and decision tree classifiers were
trained. Logistic regression achieved an AUC of 0.81, and the decision tree reached an
accuracy of 0.83, precision of 0.78, and recall of 0.72 after parameter adjustments, which
confirmed the predictive capacity of the integrated method CRISP-DM with network
analysis (CRISP-NET).

These results indicate that the integrated method is capable of producing predictive
models with competitive performance while also revealing the relational structure of
health risk factors. The high AUC and accuracy values confirm that the statistical models
are reliable, whereas the incorporation of network analysis highlights variables such as
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blood pressure, obesity, and diabetes as central elements in the prediction of hypertension.
This dual perspective suggests that CRISP-NET may achieve technical validity while also
generating actionable insights, strengthening its value for public health applications where
both prediction and understanding of relationships are essential.

Figure 22. Checklist used to track progress and verify completion of each phase in the methodologi-
cal process.

Critical Analysis of Results

Although the decision tree achieved higher accuracy and recall compared to logistic
regression, this difference can be interpreted in light of the models’ characteristics. Decision
trees adapt better to non-linear relationships and interactions between variables, which is
consistent with the complexity of health data where risk factors do not act independently.
Logistic regression, by contrast, assumes linear effects, which may limit its performance



Mach. Learn. Knowl. Extr. 2025, 7, 101 31 of 38

in multifactorial contexts such as hypertension. This finding suggests that the integrated
method benefits from including models capable of capturing complex relationships that
complement the structural perspective provided by network analysis.

From a relational standpoint, the identification of central nodes such as obesity, dia-
betes, and blood pressure has implications beyond technical validation. These nodes act as
key connectors between multiple risk factors, which reinforces their role as strategic targets
for prevention policies. For example, addressing obesity could simultaneously reduce the
influence of associated conditions such as diabetes, thereby weakening the overall network
of hypertension risk. However, the analysis also revealed limitations: the ENSANUT data
are cross-sectional, which restricts causal inference, and some variables presented missing
or self-reported values that may affect reliability. These aspects highlight the need for
complementary longitudinal studies and more robust data collection to strengthen the
explanatory power of the methodology.

4.5.3. Method Perception

Once the method application stage was completed, students’ perception was evalu-
ated through a questionnaire designed in Google Forms. The survey was administered on
23 May 2025, after verifying the completion of the process using the checklist. The objec-
tive of this instrument was to gather students’ opinions regarding the clarity, usefulness,
difficulties, and value of the integrated CRISP-DM and network analysis method.

The questionnaire consisted of ten questions divided into five sections. The first,
focused on general information, allowed the identification of the participating group. The
second addressed the clarity and understanding of the method, evaluating its structure and
the ease with which each phase could be identified. The third focused on the usefulness of
the process, considering whether it facilitated the development of the project and whether
the integration of network analysis added value. The fourth explored the difficulties en-
countered during implementation. The fifth, oriented toward added value, asked whether
students learned something new, whether they would be willing to apply the process again,
and what aspects could be improved. The survey concluded with an open-ended question
designed to gather participants’ suggestions, which provided a broad and contextualized
view of their experience with the implemented method.

As shown in Figure 23, 70 percent of participants rated the structure of the method as
“very clear” and 30 percent as “clear”. No student perceived it as “unclear” or “confusing”,
which indicates that most of them properly understood the phases of the process and its
organization during implementation.

Figure 23. Perceived clarity of the proposed method’s structure.
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Another result obtained, shown in Figure 24, indicates that 85 percent of the partici-
pants reported having fully identified each phase of the integrated process, while 15 percent
stated that they did so only partially. No student reported being unable to identify the
phases, which reinforces the clarity with which the method was presented and structured
during its implementation.

Figure 24. Ease of identifying each phase of the integrated process.

In Figure 25, it can be seen that 85 percent of the students indicated that the method
greatly facilitated the organization and analysis of their project, while 15 percent stated that
it helped “somewhat”. No responses were recorded for the “little” or “not at all” options,
suggesting an overall positive perception regarding the practical usefulness of the process
in the development of the work.

Figure 25. Perceived usefulness of the method for project organization and analysis.

One of the evaluated aspects was the perception of the added value brought by
integrating network analysis into the process. As shown in Figure 26, 85 percent of
participants considered that this integration did provide value, 10 percent were unsure,
and only 5 percent responded negatively. These results reflect a majority acceptance of the
usefulness of combining network analysis with the CRISP-DM model.
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Figure 26. Perceived added value of integrating network analysis into the process.

Another relevant aspect explored was the perception of the usefulness of each phase
of the integrated process. As shown in Figure 27, the modeling stage was considered the
most useful by all participants (100 percent), followed by data preparation (95 percent) and
model evaluation (90 percent). The data understanding phase was also positively evalu-
ated (75 percent), along with business understanding (60 percent), while deployment was
marked as useful by only 10 percent of the respondents. These results help identify which
stages of the process provide the greatest value for students and where its implementation
could be strengthened.

Figure 27. Most useful phases of the integrated process according to participants.

Figure 28 shows the phases of the process where participants experienced the most
difficulties. Modeling was identified as the most challenging stage, with 65 percent of
responses, followed by model evaluation (55 percent), data preparation (50 percent), and
business understanding (45 percent). To a lesser extent, complications were reported
in deployment (15 percent) and data understanding (25 percent), while only 5 percent
indicated that they had no difficulties. These results help identify the critical points in the
process where greater guidance or support is needed to facilitate execution.

Figure 29 shows the main difficulties faced by students during the implementation
of the method. Seventy percent indicated that there was not enough time to properly
complete the activities, while 65 percent pointed out the lack of examples or guides as a
significant limitation. Additionally, 50 percent mentioned that the activities were unclear,
and 30 percent stated that they did not fully understand the concepts. These results
highlight key areas for improvement related to time planning, clarity of instructions, and
conceptual guidance during the development of the process.
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Figure 28. Phases of the method where participants experienced the most difficulty.

Figure 29. Main difficulties faced by participants during the method’s application.

Ninety-five percent of the students reported having learned something new by apply-
ing the method, which validates the formative potential of the methodological proposal.
Only a minority, 5 percent, indicated that they did not acquire new knowledge, suggesting
that the experience, in general terms, met its educational goal (Figure 30).

Figure 30. Participants’ perception of learning something new from the method.



Mach. Learn. Knowl. Extr. 2025, 7, 101 35 of 38

Figure 31 shows that 65 percent of the students expressed willingness to apply this
process in future projects, while 35 percent said they would do so only if the context allows.
None of the participants expressed a complete refusal to reuse the method, which reinforces
its value as a flexible and adaptable tool for data analysis in different settings.

Figure 31. Willingness to apply the integrated process in future projects.

The responses to the open-ended question on suggestions for improving the process
provided valuable input. Among the most frequent recommendations were the need for
more time to complete the activities, a request to reduce the workload in some phases
such as data preparation, and the importance of having clearer examples and guides
for interpreting network analysis metrics. Students also suggested including a general
presentation of the method at the beginning and improving organization through team
work templates. Although some students mentioned having no suggestions or said that
everything was fine, the feedback received helps identify specific areas for improvement in
future implementations.

The perception results confirm that the integrated method is not only technically
coherent but also pedagogically effective. The clarity with which students identified
each phase, together with the recognition of its usefulness in organizing and analyzing
projects, validates the transparency and structure of the proposal. At the same time,
the reported difficulties point to areas that require refinement, such as providing more
examples and allocating sufficient time for complex stages like modeling and evaluation.
The high percentage of students who acknowledged learning something new and expressed
willingness to apply the method again demonstrates its educational value and potential for
replication. Overall, the feedback highlights that CRISP-NET fosters both comprehension
and practical engagement, making it a relevant framework for training in data analysis and
network-based approaches.

5. Conclusions
Properly defining a methodological process for data analysis is essential to achieve

meaningful results, especially when aiming to integrate structured models such as CRISP-
DM with analytical approaches like network analysis. This integration provides a clear
guide of activities and outputs for each phase, broadens the understanding of relationships
between variables, and enables a deeper reading of the context, facilitating the identification
of complex patterns and the design of more informed solutions.

The application of this process with a working group made it possible to test each
component of the method, validate the sequence of activities, and generate concrete evi-
dence of its functionality. The active participation of the group and their input were key
to formalizing this methodological integration, as they provided valuable observations re-
garding the clarity of the phases, the usefulness of the outputs generated, and the necessary
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improvements to optimize the process. The use of templates, the digital repository, and
the checklist made it possible to document each step with order and accuracy, ensuring
traceability and continuous monitoring.

The development of the process showed that, despite challenges related to workload,
the need for more specific examples, or limited time, it is possible to successfully carry out
a combined strategy that integrates structured analysis with a relational approach. The
activities were progressively understood and applied, which facilitated the development
of outputs aligned with the analysis objectives and supported a better interpretation of
the results.

Despite the successful application of the integrated method, several limitations were
identified. Time constraints reduced the possibility of completing some activities with
greater depth, particularly during the modeling and evaluation phases. Students also
reported the need for clearer examples to better understand the use and interpretation
of network metrics. In addition, the workload during the data preparation phase was
perceived as excessive, which in some cases slowed down progress and affected the balance
across stages.

Future implementations of CRISP-NET could address these limitations by scaling the
methodology to larger datasets from different domains, such as finance, education, or social
networks, to test its generalizability. Another line of improvement is the automation of
some steps, particularly in data preparation and network construction, through specialized
software tools. Furthermore, incorporating dynamic network metrics would extend the
analytical scope, allowing for the evaluation of temporal and evolving structures within
the data.

This first exercise lays the groundwork for consolidating a methodology adaptable to
different professional environments, allowing not only the organization of data analysis
projects but also enhancing the exploration of relationships between variables. Based on
this experience, areas for improvement were identified and will be prioritized in future
implementations, such as simplifying documents, refining templates, and improving visual
schemes. These adjustments will strengthen the methodological proposal and enable its
efficient use in technical, operational, and strategic contexts.
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